Hintergrundbild mit Feldern
 

Functional groups differ in trait means, but not in trait plasticity to species richness in local grassland communities



 Abstract

Despite growing interest in incorporating intraspecific variation of functional traits in community-level studies, it remains unclear whether species classified into functional groups based on interspecific trait differences are similar regarding their variation in trait expression in response to varying plant diversity and composition in local communities. In a large biodiversity experiment (Jena Experiment) designed on a trait-based a priori definition of functional groups (grasses, legumes, small herbs, tall herbs), we studied means, extent of variation (coefficient of variation across communities) and plasticity to increased plant diversity (slopes over a logarithmic species richness ranging from 1, 2, 4, 8 and 16 to 60 species) for nine functional traits. Species means and extent of variation in traits related to nitrogen (N) acquisition and N use differed among functional groups and were more similar in phylogenetically closely related species than expected by chance. Species in the same functional group showed a weak phylogenetic signal and varied widely in means and extent of variation in traits related to shoot architecture and to a smaller extent in leaf traits related to carbon acquisition. This indicated that functional groups were less distinguishable in light than in nitrogen acquisition strategies. The direction and degree of trait plasticity to increasing species richness did not show a phylogenetic signal and were not different among functional groups, but varied largely among species within functional groups. Correlation structures in trait means, extent of trait variation and trait plasticity revealed functional tradeoffs in the acquisition of nitrogen and light across species. While correlations between trait means and extent of trait variation varied from trait to trait (positive, negative or unrelated), trait means and trait plasticity were mostly unrelated. Our results suggest that the concept of functional groups is viable, but context-specific trait measurements are required to improve our understanding about the functional significance of intraspecific trait variation and interspecific trait differences in local plant communities.

Citation:

Roscher, Christiane; Schumacher, Jens; Lipowsky, Annett; Gubsch, Marlen; Weigentl, Alexandra; Schmid, Bernhard; Bchmann, Nina; Schulze, Ernst-Detlef

Contact:

Christiane Roscher

Meldung vom: 25.10.2018 12:19 Uhr
zurück | vor